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SHM Key to Smart and Sustainable Cities Metastructure
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The Structural Health Monitoring (SHM) System

* Main Components

* Sensors — accelerometers, strain gages, tilt miters,
temperature, pressure, etc.

* Sensor network/ communication — wired and wireless
networks

e Data collection — local at sensor, local at structure, or
remote data bank

* Data interpretation — structural properties, damage
diagnosis and prognosis
* Information delivery — decision support



Structural Health Monitoring (SHM)

* Purpose —why monitor structures
* Long-term deterioration
* Extreme event effects
* Smart City paradigm
* Digital twins
* Sustainable design
* Objective of SHM
 Damage diagnosis
* Detection
* Localization
* C(Classification
e Quantification
 Life prognosis
e Residual strength
e Residual life




Fundamental Approaches to Diagnosis

* Physics-based / System ldentification
e Uses a physical model of the structure

 Uses data from multiple sensors distributed on the structure to
identify changes in critical physical parameters

 Computationally expensive

 Data — based models
 Use data from a single sensors or several neighboring sensors
* Tracks changes in the characteristics of the signals

 Use advanced machine learning (ML), data science (DS)
methods, artificial intelligence (Al)



Objective and outline of presentation

* Objective
* Provide an overview of data-based models developed by our team
* Show some examples

e Outline
* Data-driven Algorithms:

* Long-term/slow deterioration
* Auto-regressive models
* Wavelet-based energy models

* Rapid-post-disaster assessment — all of the above plus
e Residual displacement estimation
 Maximum dynamic displacement estimation



Algorithms for long term deterioration damage and
extreme events

* Autoregressive model with statistical significant
testing

e Gaussian mixture model
* Wavelet transform — based Algorithms



Auto-Regressive Moving Average (ARMA) Methods!

* Use pre-event and post-event ambient (low amplitude)
vibrations

 Fit ARMA model to the sighal that are normalized and
standardized and use the AR coefficients

* Define Damage Sensitive Feature?
* DSF = it where ¢; are the first AR coefficients

\/a%+a%+a§
* |dentify changes in DSF through statistical significance testing
* Showed analytically that |0a;/00;| < At/ /m;k;

‘Refs: Doebling et al., 1996; Sohn at al., 2001
’Nair at al., 2005, Nair and Kiremidjian, 2007, Nair at al., 2008



Example Application

2Nair at al., 2005, Nair and Kiremidjian, 2007
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ARMA Model with Gaussian Mixture MODEL

* ARMA Model — generate dataset of {&,, a,, &5} from pre-and post
event signals
 Use Gap statistics to determine number of distinct clouds

* Models clouds as Gaussian Mixture f(X;.x) = XL, m;9;(X; 6;)
 Define Damage Measure (DM) - the Mahalanobis distance
between clouds

« A(y,z:%) = \/(y —2)I'E Yy —-2)

DM = A(.uundamaged»#damaged:zundamaged)

A(Hundamaged»o»zundamaged)

Nair and Kiremidjian, 2007



Example Application — ASCE Benchmark Structure

_}
15., i
1.
M
£ 05
0.
0.5
15 :
15
R
i
(D) 2

DP & DF 3 DP 4 DP S DP 1 DP 2
Damage Pattern

GMM for Damage Pattern 3 and

undamaged structure DM for each damage pattern



Wavelet coefficients of acceleration data

Haar, Debauche 2 and Morelet wavelet
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Structure



Application: 4-Story Ste
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(Lignos D. G. et al. 2008. Proc. 14th World Conference in Earthquake Engineering)
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Wavelet transform model

Application to four
story steel moment
frame numerical
model

DSF
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Application to Ice Monitoring Experiment

11Kg 12Kg 15Kg 20kg ————————Pp

the structure

* Increase in weight due to icing recorded after each episode
* VVibration measurements obtained after each increase in icing

* Three algorithms applied

* Peak Fourier frequency
* DSF from AR coefficients
* DSF from wavelet energy coefficients

Andre, J., Kiremidjian, A. and Georgakis, C.,ASCE J. Cold Reg. Eng., 2018, 32(2):
04018004



First AR-coefficient

Correlation between ice mass and DSF
* DSF from AR coefficients * DSF from Wavelet Energy
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Comparison of Predictions

Table 4. Comparative Table of the Three Statistical Models

Statistical model DSF DSF vanation (%) Error (%)
Fourier transform analysis First peak frequency 14 34
Autoregressive model First AR coefficient 32 27
Wavelet transform analysis Wavelet energy 68 10

Observation: The wavelet energy based DSF provides the
highest variability and lowest error

EVACES 2023, Politecnico di Milano, Italy - August 30 — September 1, 2023 18



Algorithms for Rapid Damage Detection from Extreme
Events

* Rotation/deformation algorithms for:
«  Residual displacement from accelerometer measurements

«  Deformed residual shape estimation using distributed sensors
along the height of the structure

«  Maximum dynamic (transient) displacements from accelerometer
and gyroscope measurements



Rotation Algorithm Overview

« Sensor requirements:
 Measurement in vertical and at least one horizontal direction
« Capabillity to measure at the DC level
 Accelerometer accuracy >1mg e

6 = arctan [ A*: J
A

Accelerometer aligned with gravity
Accelerometer rotated

(Figures courtesy of Allen Cheung)



Prof. Saiid Saiidi

Single column experiment — University of Nevada, Reno

Observation during a single bridge pier experiment at University of Nevada, Reno
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Experimental Validation 1: UNR tests

* Single sensor at the top of column — Test 1 University of Nevada Reno

* Estimate plastic hinge length

 Assume minimal curvature in column deformation
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Cheung, A., and Kiremidjian, A. (2013). “Development of a Rotation Algorithm for Earthquake Damage Diagnosis,
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Multiple sensors along column height -
Test 2 University of California, Berkeley
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Damage Classification

* Engineering Demand
Parameter = residual
displacement/drift

* Depend on structural
system

« Examples: - FEMA P-58
methodology for the
performance-based
earthquake resistant
design criteria

Table C-1

Damase
State

Damage States for Residual Story Drift Ratio

Residual Story Dirift Ratio
.d .f- hl:'lh

Descri ptil:l-n

Mo structural realignment is necessary for ,
structural stability; however, the buillding mary 0.2%

DS require adjustment and repairs to (equal to the maximum out-of-
nonstructural and mechanical components plumb tolerance typically
that are 5er.15|t|'-.-'n.=_- ‘I:Er building alignment (e.g., permitted in new construction)
elevator rails, curtain walls, and doors).

Realignment of structural frame and related
structural repairs required to maintain
permissible drift limits for nonstructural and ‘

D52 mechanical components and to limit 0-5%
degradation in structural stability (i.e.,
collapse safety)

Major structural realignment is required to
restore margin of safety for lateral stability;

Ds3 however, the required realignment and repair o
of the structure may not be economically and -
practically feasible (i.e_, the structure might
be at total economic loss).

Residual dnft is sufficiently large that the ngh.- D'fjctlllt}r Sﬁte?-.s
L F9% = 0.9V, . W
structure is in danger of collapse from Rl

DS4 earthquake aftershocks (note: this Mc:dera_te Ductility Systems
performance point might be considered as 2% < 0.3V g/ W
equal to collapse, but with greater Limited Ductility Systems
uncertainty). 1% < 0.5V /W

Motes: (1) h s the storny height.




Residual displacement/drift is widely used as the Engineering
Demand Parameter in fragility functions

 Damage classification
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Distributed Sensor Algorithm: Multiple-sensor

1. Deploy multiple sensors along structure Balafas, K. and Kiremidjian, A. (2015),
_ _ ] _ Structure and Infrastructure

2. Obtain multiple rotation readings Engineering, Vol. 11, No. 1, pp. 51-62.

3. Fit polynomial curve to rotations

4. Integrate polynomial curve to estimate displacements
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Mean algorithm error as function of number of sensors and
polynomial order
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Experimental set-up at NCREE, NTU

 Test 3: National Center for Research in
Earthquake Engineering, National Taiwan

University — Prof. C. H. Loh —> ivor
Wireless
accelerometer
* Two three-story steel moment frames & i gyroscore
F
 Second frame — one column damaged
* Wireless sensors equipped with
Specimen 2 ke
* 3D accelerometers and Seecimen *

* 3D gyroscopes

* Direct displacement measurement at
each story - LVDT




Damage quantification — depends on:

« Residual displacement
« Maximum transient/dynamic displaceme nig————

« Combined maximum dynamic displacements and residual displacement —
more robust damage classification

A
- (™ RESIdU?! _________ P int Table C-2  Sample Transient Story Drift Ratios, A/ h, associated with
E \/ """""""""" Damage State Definitions for Residual Drift
0] X Transient
= /
= JFP
o __C’ n=4 Sample Framing System
Steel ductile moment | s 3 701 410 e
‘ c*': L= 1 resisting frame . = o - f-ham
| _ Erzilrl-.fu::rced concrete shear 0.5% 1% 2 29 2 62 3.6%
IDR, Peak Story Drift Ratio
From FEMA P-58, 2012 Timber shear wall % 15% | 27% | 41% 5.1%




Displacement Estimation Algorithm

w|n|

Y

az[n], ay[n]

Compute angle changes

Afn| = wn|AT

Compute angle using accelerometer
0.[n| = arctan(a[n]/a,[n])

Af[n]

0[]

Oln] = a(@n — 1] + Afn]) + (1 — a)f,[n]

Complementary Filter

l 0|n]

Compute displacement

D[n] = H tan(6[n])




Measured vs. Estimated Displacements

* From LVDT
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Peak dynamic displacement of Specimen 1 Floor 1.

« Good agreement of peak transient displacement

Run | LVDT (mm) | Complementary Filter (mm) | Accelerometer (mm)
1 14.8653 20.8089 22.4400
2 41.7862 45.0247 47.8257
3 59.5295 60.9200 62.9520
4 79.9475 81.1538 85.0782
5 92.4409 93.8918 114.8937
6 117.3312 116.5927 163.7939
7 126.4404 128.4456 145.4661




Summary and Conclusions

Data-based algorithms can be effective in determining damage
* From long-term deterioration
* From extreme event/load occurrences

Data-based algorithms are computationally efficient

Data-based algorithms can be easily embedded on a microchip to
provide on-board near-real time assessments leading to alerts

Localization and quantification remain a challenge
More experimentation needed
More validation needed
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