A Systems Approach to Wireless Structural Health Monitoring

Anne S. Kiremidjian

Stanford University

10th International Conference of Experimental Vibration Analysis for Civil Engineering Structures Politecnico di Milano, Italy - August 30 – September 1, 2023

SHM Key to Smart and Sustainable Cities Metastructure

Kiremidjian and Lepech, (2023). A Metastructure Approach to Smart and Sustainable Cities, NAE, *The Bridge*, Vol. 53, No. 1. pp2-14.

The Structural Health Monitoring (SHM) System

- Main Components
 - Sensors accelerometers, strain gages, tilt miters, temperature, pressure, etc.
 - Sensor network/ communication wired and wireless networks
 - Data collection local at sensor, local at structure, or remote data bank
 - Data interpretation structural properties, damage diagnosis and prognosis
 - Information delivery decision support

Structural Health Monitoring (SHM)

- Purpose why monitor structures
 - Long-term deterioration
 - Extreme event effects
 - Smart City paradigm
 - Digital twins
 - Sustainable design
- Objective of SHM
 - Damage diagnosis
 - Detection
 - Localization
 - Classification
 - Quantification
 - Life prognosis
 - Residual strength
 - Residual life

Fundamental Approaches to Diagnosis

- Physics-based / System Identification
 - Uses a physical model of the structure
 - Uses data from multiple sensors distributed on the structure to identify changes in critical physical parameters
 - Computationally expensive
- Data based models
 - Use data from a single sensors or several neighboring sensors
 - Tracks changes in the characteristics of the signals
 - Use advanced machine learning (ML), data science (DS) methods, artificial intelligence (AI)

Objective and outline of presentation

- Objective
 - Provide an overview of data-based models developed by our team
 - Show some examples
- Outline
 - Data-driven Algorithms:
 - Long-term/slow deterioration
 - Auto-regressive models
 - Wavelet-based energy models
 - Rapid-post-disaster assessment all of the above plus
 - Residual displacement estimation
 - Maximum dynamic displacement estimation

Algorithms for long term deterioration damage and extreme events

- Autoregressive model with statistical significant testing
- Gaussian mixture model
- Wavelet transform based Algorithms

Auto-Regressive Moving Average (ARMA) Methods¹

- Use pre-event and post-event ambient (low amplitude) vibrations
- Fit ARMA model to the signal that are normalized and standardized and use the AR coefficients
- Define Damage Sensitive Feature²

•
$$DSF = \frac{\alpha_1}{\sqrt{\alpha_1^2 + \alpha_2^2 + \alpha_3^2}}$$
 where α_i are the first AR coefficients

- Identify changes in DSF through *statistical significance testing*
- Showed analytically that $|\partial \alpha_i / \partial \theta_i| \leq \Delta t / \sqrt{m_i k_i}$

Refs:1Doebling et al., 1996; Sohn at al., 20012Nair at al., 2005, Nair and Kiremidjian, 2007, Nair at al., 2008

Example Application

• Application to ASCE Benchmark structure

²Nair at al., 2005, Nair and Kiremidjian, 2007

ARMA Model with Gaussian Mixture MODEL

- ARMA Model generate dataset of { α_1 , α_2 , α_3 } from pre-and post event signals
 - Use Gap statistics to determine number of distinct clouds
 - Models clouds as Gaussian Mixture $f(X_{1:N}) = \sum_{i=1}^{M} \pi_i \phi_i(X; \theta_i)$
 - Define Damage Measure (DM) the Mahalanobis distance between clouds

•
$$\Delta(y, z; \Sigma) = \sqrt{(y - z)^T \Sigma^{-1} (y - z)}$$

•
$$DM = \frac{\Delta(\mu_{undamaged}, \mu_{damaged}, \Sigma_{undamaged})}{\Delta(\mu_{undamaged}, 0, \Sigma_{undamaged})}$$

Nair and Kiremidjian, 2007

Example Application – ASCE Benchmark Structure

Wavelet coefficients of acceleration data

Haar, Debauche 2 and Morelet wavelet

Wavelet transform model

- DSF function of wavelet energies
- $DSF = 1 \frac{E_{scale(\hat{a})}}{\sum_{i=M}^{N} E_{scale(a^i)}}$
- Sensitivity of DSF

$$\frac{\partial CE}{\partial X} \cong \frac{\beta'}{2} \times \frac{(2\beta' - 3\alpha L - \alpha L^2)X^2 + 2\alpha L(L+1)X + \alpha L(1-L)}{(1-X)^2 \{\alpha L - (\alpha L - \beta')X\}^2} \propto \frac{1}{X^2}$$

 $X = \exp(-2\xi\omega_n)$ Where X<1

• Application to ASCE Benchmark Structure

Application: 4-Story Steel Moment Resisting Frame Test

 $T_1 = 0.45 \text{sec}$ $f_s = 128 \text{ Hz}$

The frame is subjected to a series of scaled 1994 Northridge Earthquake motion

University at Buffalo (SUNY) Network for Earthquake Engineering Simulation (NEES)

(Lignos D. G. et al. 2008. Proc. 14th World Conference in Earthquake Engineering)

Wavelet transform model

 Application to four story steel moment frame numerical model

Application to Ice Monitoring Experiment

- Increase in weight due to icing recorded after each episode
- Vibration measurements obtained after each increase in icing
- Three algorithms applied
 - Peak Fourier frequency
 - DSF from AR coefficients
 - DSF from wavelet energy coefficients

Andre, J., Kiremidjian, A. and Georgakis, C., *ASCE J. Cold Reg. Eng.*, 2018, 32(2): 04018004

Correlation between ice mass and DSF

• DSF from AR coefficients

• DSF from Wavelet Energy

Comparison of Predictions

Table 4. Comparative Table of the Three Statistical Models

Statistical model	DSF	DSF variation (%)	Error (%)
Fourier transform analysis	First peak frequency	14	34
Autoregressive model	First AR coefficient	32	27
Wavelet transform analysis	Wavelet energy	68	10

Observation: The wavelet energy based DSF provides the highest variability and lowest error

Algorithms for Rapid Damage Detection from Extreme Events

- Rotation/deformation algorithms for:
 - Residual displacement from *accelerometer* measurements
 - Deformed residual shape estimation using distributed sensors along the height of the structure
 - Maximum dynamic (transient) displacements from accelerometer and gyroscope measurements

Rotation Algorithm Overview

- Sensor requirements:
 - Measurement in vertical and at least one horizontal direction
 - Capability to measure at the DC level
 - Accelerometer accuracy >1mg

Accelerometer aligned with gravity

 $\frac{A'_x}{A'}$

 $\theta = \arctan^{1}$

(Figures courtesy of Allen Cheung)

Single column experiment – University of Nevada, Reno

Observation during a single bridge pier experiment at University of Nevada, Reno

Experimental Validation 1: UNR tests

- Single sensor at the top of column Test 1 University of Nevada Reno
- Estimate plastic hinge length
- Assume minimal curvature in column deformation

Cheung, A., and Kiremidjian, A. (2013). "Development of a Rotation Algorithm for Earthquake Damage Diagnosis, *Earthquake Spectra*, Vol. 30, No. 4, pp. 1381-1401.

Multiple sensors along column height – Test 2 University of California, Berkeley

(Figure from Hachem et al., 2003)

Estimates from sensor on top of column

Cheung, A., and Kiremidjian, A. (2013). "Development of a Rotation Algorithm for Earthquake Damage Diagnosis, *Earthquake Spectra*, Vol. 30, No. 4, pp. 1381-1401.

Damage Classification

- Engineering Demand Parameter = residual displacement/drift
- Depend on structural system
- Examples: FEMA P-58 methodology for the performance-based earthquake resistant design criteria

Table C-1 Damage States for Residu	al Stor	y Drift	Ratio
------------------------------------	---------	---------	-------

Damage State	Description	Residual Story Drift Ratio $\Delta / h^{(1)}$
DS1	No structural realignment is necessary for structural stability; however, the building may require adjustment and repairs to nonstructural and mechanical components that are sensitive to building alignment (e.g., elevator rails, curtain walls, and doors).	0.2% (equal to the maximum out-of- plumb tolerance typically permitted in new construction)
DS2	Realignment of structural frame and related structural repairs required to maintain permissible drift limits for nonstructural and mechanical components and to limit degradation in structural stability (i.e., collapse safety)	0.5%
DS3	Major structural realignment is required to restore margin of safety for lateral stability; however, the required realignment and repair of the structure may not be economically and practically feasible (i.e., the structure might be at total economic loss).	1%
DS4	Residual drift is sufficiently large that the structure is in danger of collapse from earthquake aftershocks (note: this performance point might be considered as equal to collapse, but with greater uncertainty).	High Ductility Systems 4% < 0.5V _{design} /W
		Moderate Ductility Systems 2% < 0.5V _{design} /W
		Limited Ductility Systems 1% < 0.5V _{design} /W

Residual displacement/drift is widely used as the Engineering Demand Parameter in fragility functions

Damage classification

Distributed Sensor Algorithm: Multiple-sensor

- 1. Deploy multiple sensors along structure
- 2. Obtain multiple rotation readings
- 3. Fit polynomial curve to rotations
- 4. Integrate polynomial curve to estimate displacements

Balafas, K. and Kiremidjian, A. (2015), Structure and Infrastructure Engineering, Vol. 11, No. 1, pp. 51-62.

Mean algorithm error as function of number of sensors and polynomial order

Experimental set-up at NCREE, NTU

- Test 3: National Center for Research in Earthquake Engineering, National Taiwan University – Prof. C. H. Loh
- Two three-story steel moment frames
- Second frame one column damaged
- Wireless sensors equipped with
 - 3D accelerometers and
 - 3D gyroscopes
- Direct displacement measurement at each story - LVDT

Damage quantification – depends on:

- Residual displacement
- Maximum transient/dynamic displacement
- Combined maximum dynamic displacements and residual displacement more robust damage classification

Table C-2Sample Transient Story Drift Ratios, ⊿ / h, associated with
Damage State Definitions for Residual Drift

		∆/h			
Sample Framing System	<u> Д</u> у / h	DS1 ^{co}	DS2 ⁽¹⁾	DS3 th	DS4 ⁽²⁾
Steel ductile moment resisting frame	1%	1.5%	2.7%	4.1%	7.1%
Reinforced concrete shear wall	0.5%	1%	2.2%	2.6%	3.6%
Timber shear wall	1%	1.5%	2.7%	4.1%	5.1%

Displacement Estimation Algorithm $a_x[n], a_y[n]$ $\omega[n]$ Compute angle changes Compute angle using accelerometer $\theta_a[n] = \arctan(a_x[n]/a_y[n])$ $\Delta \theta[n] = \omega[n] \Delta T$ $\Delta \theta[n]$ $\theta_a[n]$ **Complementary Filter** $\theta[n] = \alpha(\theta[n-1] + \Delta\theta[n]) + (1-\alpha)\theta_a[n]$ $\theta[n]$ Compute displacement $\widehat{D}[n] = H \tan(\theta[n])$

Measured vs. Estimated Displacements

Floor 1

Run 5

- From LVDT
- Gyroscope with complimentary • filter
- Accelerometer double • integration

Time (s)

Peak dynamic displacement of Specimen 1 Floor 1.

• Good agreement of peak transient displacement

Run	LVDT (mm)	Complementary Filter (mm)	Accelerometer (mm)
1	14.8653	20.8089	22.4400
2	41.7862	45.0247	47.8257
3	59.5295	60.9200	62.9520
4	79.9475	81.1538	85.0782
5	92.4409	93.8918	114.8937
6	117.3312	116.5927	163.7939
7	126.4404	128.4456	145.4661

Summary and Conclusions

- Data-based algorithms can be effective in determining damage
 - From long-term deterioration
 - From extreme event/load occurrences
- Data-based algorithms are computationally efficient
- Data-based algorithms can be easily embedded on a microchip to provide on-board near-real time assessments leading to alerts
- Localization and quantification remain a challenge
- More experimentation needed
- More validation needed

Acknowledgments

 Stanford Students: Krish Nair Hae Young Noh Allen Cheung Konstantinos Balafas Julia Andre Yizheng Liao

National Science Foundation

George E. Brown Jr. Network for Earthquake Engineering Simulation

Collaborations:

- University of Nevada, Reno
 - Prof. Saiid Saiidi and his students
- University of California, Berkeley
 - Prof. Steve Mahin
- National Taiwan U. NCREE,
 - Prof. C. H. Loh and his students
- Denmark Technical University & Aarhus University
 - Prof. Christos Georgakis
- Los Alamos National Labs
 - Dr. Charles Farrar

10th International Conference of Experimental Vibration Analysis for Civil Engineering Structures Politecnico di Milano, Italy - August 30 – September 1, 2023

Thank You!