Introduction

Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

Conclusions

An Introduction to Population-Based SHM: When is a Bridge not an Aeroplane?

K. Worden¹, D. Hester², A. Bunce², J. Gosliga¹ & P. Gardner¹

¹Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield

²Civil Engineering, School of Natural and Built Environment, Queens University Belfast

EVACES 2023, Politecnico di Milano, 31st August 2023

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

Conclusions

1 Introduction

2 Transfer Learning

3 PBSHM

4 When is a Bridge not an Aeroplane?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

5 Another Example: Wind Turbines

6 Real-World Case Study

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Introduction

- Transfer Learning
- PBSHM
- When is a Bridge not an Aeroplane?
- Another Example: Wind Turbines
- Real-World Case Study
- Conclusions

- Population-based structural health monitoring (PBSHM) has been proposed recently as a means of addressing certain difficult problems in 'conventional' SHM.
- Main motivation for the framework is to allow data from one structure to strengthen health-state inferences on a different one.
- Main means of allowing such cross-structure diagnostics is via the machine learning discipline of *transfer learning*.

Population-Based SHM - Population Types

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

Introduction

Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

Conclusions

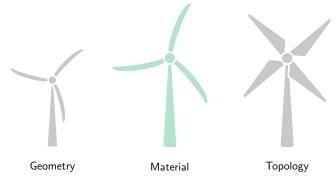
Homogeneous population:

Population-Based SHM - Population Types

Introduction

Transfer Learning

PBSHM


When is a Bridge not an Aeroplane?

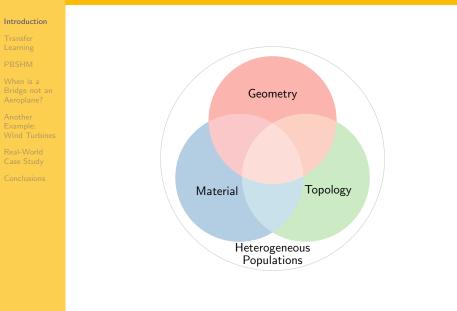
Another Example: Wind Turbines

Real-World Case Study

Conclusions

Heterogeneous population:

A B > A B > A B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A


Sac

э

Population-Based SHM - Population Types

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

990

Introduction

Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

Conclusions

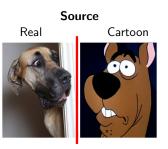
・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

Introduction

Transfer Learning


PBSHM

When is a Bridge not an Aeroplane?

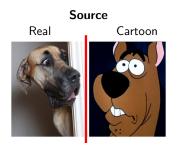
Another Example: Wind Turbines

Real-World Case Study

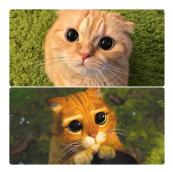
Conclusions

Introduction

Transfer Learning


PBSHM

When is a Bridge not an Aeroplane?


Another Example: Wind Turbines

Real-World Case Study

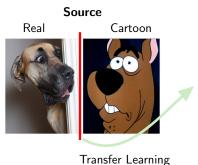
Conclusions

Target

990

Introduction

Transfer Learning


PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

Conclusions

590

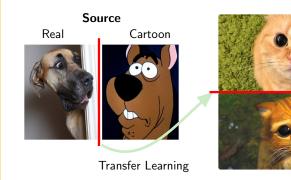
Target

Target

590

Introduction

Transfer Learning


PBSHM

When is a Bridge not an Aeroplane?

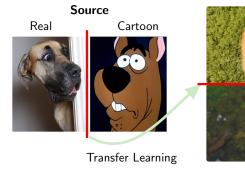
Another Example: Wind Turbines

Real-World Case Study

Conclusions

Introduction

Transfer Learning


PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

Conclusions

Target Real

Cartoon

990

Introduction

Transfer Learning

- PBSHM
- When is a Bridge not an Aeroplane?
- Another Example: Wind Turbines
- Real-World Case Study
- Conclusions

- A significant issue in transfer learning is that attempted transfer between wildly-disparate structures will make matters worse.
- In order to deal with this issue, PBSHM is based on an abstract representation of structures, in which structures become points in a metric space.
- The 'metric' aspect of the space is crucial, it allows a measure of distance, or similarity, between structures such that transfer should only be attempted between those which are 'sufficiently close' to each other.
- The first stage in establishing the representation of a structure is to construct an *Irreducible Element* (IE) model.

IE Models

Introduction

Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

- An IE model of a structure is intended to capture the essential nature of that structure in terms of a small (if possible) set of fundamental structural elements.
- These elements can be labelled as fundamental engineering objects, e.g. [beam], [plate], [shell] etc., or contextually, e.g. [wing], [deck], [blade].
- The second step in representation is to convert the IE model into an *attributed graph* (AG).
- In the AG representation, individual IEs appear as nodes (vertices) in the graph; information about how elements join together is encoded in graph edges.
- Each node and edge is assigned a vector of attributes which specify details of material and geometry etc.

The Space of Graphs/Structures

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Introduction

Transfer Learning

PBSHM

- When is a Bridge not an Aeroplane?
- Another Example: Wind Turbines
- Real-World Case Study
- Conclusions

- The important point now, is that the space of AGs is a metric space, as mentioned above.
- The metric here makes use of the *maximum common subgraph* (MCS) between two graphs, as this will correspond to a common substructure in the structures of interest.
- The assumption is that damage state information may be shareable between structures if it occurs in a common substructure.

SHM Problems

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Introduction

Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

- In order to assess how likely it is that one will succeed in transferring SHM problems between structures, one needs a principled means of describing the structure of problems.
- For data-based SHM, the main issue concerns the *label space* of the problem.
- For example, if the problem is to locate damage on a structure to one of N substructures, the label space is simply the discrete set {L₁,..., L_N}, where L_i is unity if damage is present in substructure *i*, and zero otherwise.

When is a Bridge not an Aeroplane?

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Introduction

Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

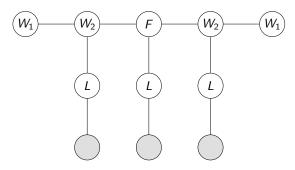
Another Example: Wind Turbines

Real-World Case Study

- The idea of transfer across heterogeneous populations, raises the question of when structures or substructures are sufficiently similar that transfer is possible i.e. does not lead to *negative* transfer, and make diagnostics *worse*.
- In more facetious terms, one might ask the question: when is a bridge not an aeroplane?
- The simple answer to that question is *almost always*, but a more detailed answer is worth consideration.
- Consider a highly-simplified AG for an aeroplane.

AG Model of an Aeroplane

Introduction


Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

- *F* corresponds to an IE [fuselage], *W*₁ to [wing (inner)], *W*₂ to [wing (outer)] and *L* to [landing gear].
- Although the figure is very simple, it is generic; many aeroplanes will have this representation at some level of detail.

IE Model of a Bridge

・ロト ・ 同ト ・ ヨト ・ ヨト

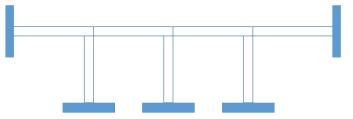
3

Sac

Introduction

Transfer Learning

PBSHM


When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

Conclusions

• Now, consider a highly-simplified IE model of a four-span bridge *B*₄.

• With contextual labelling for the IEs, where S denotes [deck] and P denotes [pillar].

AG Model of a Bridge

・ロト ・ 同ト ・ ヨト ・ ヨト

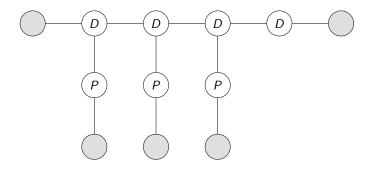
э

Sac

Introduction

Transfer Learning

PBSHM


When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

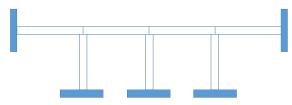
Conclusions

• The corresponding AG model of the bridge is,

Introduction

Transfer Learning

PBSHM


When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

Conclusions

- One can actually arrive at different IE-models via the placing of joints.
- The representation of B_4 earlier is, in a sense, minimal.
- Suppose one wished to make the IE model more symmetrical, like,

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

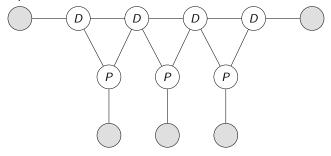
Uniqueness II

・ロット (雪) (キョット (日)) ヨー

Sac

Introduction

Transfer Learning


PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

- While symmetry is usually very useful as a guiding principle, in this case it produces a problem.
- The induced AG from this IE model is much more complicated,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

- Transfer Learning
- PBSHM
- When is a Bridge not an Aeroplane?
- Another Example: Wind Turbines
- Real-World Case Study
- Conclusions

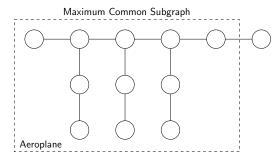
- Apart from the complexity of the 'symmetric' AG, the representation has made it difficult to compare even another representation of the same structure.
- We need rules for the production of IE models, so that ambiguity is avoided.
- In this case the rule might be: when a pillar IE is placed at the joint between two sections of deck, it should be connected only to the left deck IE.
- Such rules should be applied whenever any physics does not dictate otherwise.

Comparing the Aeroplane and Bridge

Introduction

Transfer Learning

PBSHM


When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

Conclusions

• Now, comparing the graphs at a topological level, one has the situation,

• The maximum common subgraph between the bridge *B*₄ and the AG for the aeroplane is the entire aeroplane. Up to topology,

$$[\mathsf{bridge}] = [\mathsf{plane}] \oplus [\mathsf{node}]$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Sac

Comparing the Aeroplane and Bridge

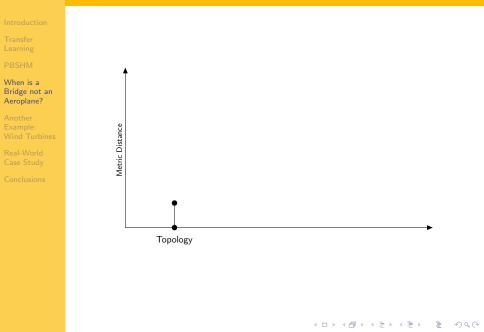
Introduction

Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines


Real-World Case Study

Conclusions

- At this level, if the SHM problems for the bridge and aeroplane are location problems, transfer from the bridge to the aeroplane looks straightforward.
- Transfer from the aeroplane to the bridge is an (L + 1) problem. (Briefly, this is problem in which the source and target problems for transfer differ in only one label.)
- Furthermore, the additional node in the bridge AG is a ground node.
- Applying some metric on the space of AGs would indicate in this case, that the bridge and the aeroplane are very similar structures, and successful transfer might be indicated.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

'Metric' for Transfer

Structural Equivalence

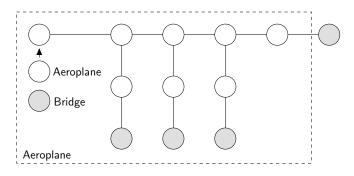
・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Sac

Introduction

Transfer Learning


PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

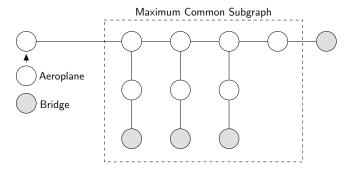
- One should consider structural equivalence rather than just topological (i.e. the AGs should be directly equivalent with ground nodes in corresponding places.
- The situation is then,

Structural Equivalence

Introduction

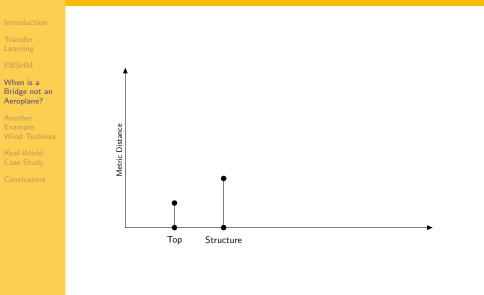
Transfer Learning

PBSHM


When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study


Conclusions

 In the case of structural equivalence, the maximum common subgraph between the bridge and aeroplane structures is reduced a little,

In this case, one would expect the metric distance between the bridge and the aeroplane to increase a little, assuming that an appropriate metric is in use.

'Metric' for Transfer

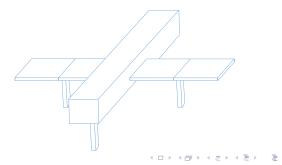
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Geometrical Similarity

Sar

Introduction

Transfer Learning


PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

- At the next level of detail in comparing structures, one must think of the detailed dimensions of the structures of interest.
- These dimensions are encoded in the AG representation via the node attributes. This allows considerable flexibility; e.g., even if all of the IEs in the aeroplane model are [beam] elements, the (crude) representation is still strangely identifiable as an aeroplane (with no tail).

Geometrical Similarity II

Introduction

Transfer Learning

PBSHM


When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

- With this rather crude IE model for the aeroplane, the two structures will move further apart in terms of the metric; because it will take into account the *attributes* which determine *geometry*.
- The edge attributes of the aeroplane AG will also be quite different to the bridge AG because of the different joints.
- For example, the joints between the deck elements in the bridge IE model could be simple butt joints; however, the joint attributes between the fuselage and inner wing elements in the aeroplane will need to encode where on the fuselage the wing is attached.
- Taking geometry into account, the structures move further apart using the AG metric.

'Metric' for Transfer

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Refinement

Introduction

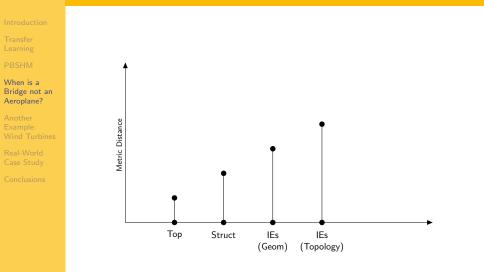
Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study


Conclusions

• Suppose the aircraft representation is considered far too crude in terms of the approximation [fuselage] = [beam] and the engineers concerned feel that a cylindrical shell is needed,

• In this case, the aeroplane and bridge structures will move further apart again in terms of the metric on the space of AGs.

'Metric' for Transfer

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Material Similarity

・ロト ・ 同ト ・ ヨト ・ ヨト

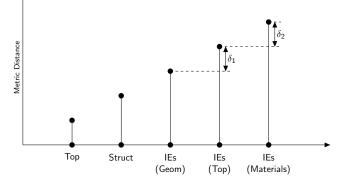
э

Sac

Introduction

Transfer Learning

PBSHM


When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

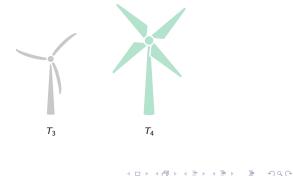
Conclusions

• Finally, the metric needs to take account of differences in material attributes (aircraft are rarely made of concrete); the final result is,

Material Similarity

Introduction

Transfer Learning


PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

- We will now consider two wind turbine structures T_3 and T_4 , differing in topology and geometry: T_3 is a three-bladed turbine, while T_4 is a four-bladed turbine which is greater in size.
- The two turbines will also be considered to be of slightly different materials.

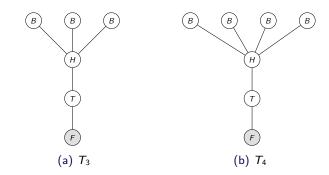
Topological/Structural Similarity

イロト 不得 トイヨト イヨト ニヨー

Sar

Introduction

Transfer Learning


PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

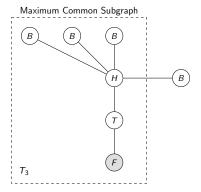
- Main difference between T_3 and T_4 is in terms of topology; they will have different AGs.
- B denotes [blade], H is [hub], T is [tower] and F denotes [foundation] – a specific designation for the ground node.

Likelihood of Transfer

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Transfer Learning


PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

- The maximum common subgraph between T₃ and T₄ shows that T₄ = T₃ ⊕ [blade].
- This observation means that the prospect of transfer learning looks positive.

(L+1) Problems

Introduction

Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

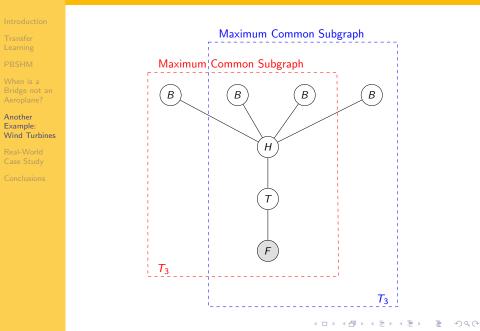
- Both examples considered in this paper are (*L* + 1) problems in terms of transfer.
- This holds true for *damage location* problems only.
- One has that, where there are two structures S_1 and S_2 , at the AG level, $S_2 = S_1 \oplus [IE]$ i.e. the maximum common subgraph is S_1 .
- In terms of the label spaces for damage location problems $\mathcal{L}_2 = \{\mathcal{L}_1, L^*\}$. Transfer from S_2 to S_1 looks likely and transfer from S_1 to S_2 is the simplest sort of extension problem.
- There will still be the possibility of negative transfer. The likelihood should be assessed using the metric on the space of AGs.

Overlapping Problems

Introduction

Transfer Learning

PBSHM


When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

- In the case of the turbines problem, another possibility arises.
- The only real difference (at the level of structural topology), is that T₄ has an extra blade node.
- In practice, it may be that the two towers and hubs, and the blades themselves are similar; if overall geometries and materials are similar, transfer on the MCS would look very feasible, one might not expect negative transfer.
- Even so, extending to the (*L* + 1) problem might be stretch.
- However, in this case, there is the possibility of transferring *twice* on two MCSs, and thus covering the whole of T_4 all four blades are labelled.

Overlapping Problems II

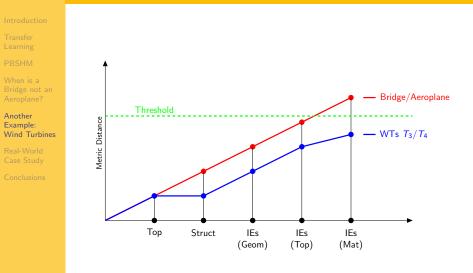
Metrics and Thresholds

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Introduction

Transfer Learning

PBSHM


When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

- In the bridge-aeroplane case, there will be significant differences in materials and geometry, as well as dimensional mismatches in the IE attribute vectors.
- In this case, the threat of negative transfer will presumably be much greater.
- Dealing with this matter properly will depend on the definition of an appropriate metric on the space of AGs, careful weighting of attributes and the definition of a *threshold*, under which, metric distances will indicate the probable success of transfer.
- The two case studies discussed here can be plotted on the same metric diagram.

Metrics and Thresholds II

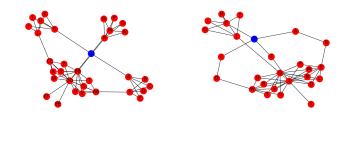
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Real Bridges

Introduction

Transfer Learning

PBSHM


When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

Conclusions

- On a somewhat amusing note; it can happen that the layout of the AG suggests a form for the structure of interest which is positively deceptive.
- Here are the AGs for two IE-models of real bridges; the layout suggests aircraft more than bridges; in fact, they appear birdlike.

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

Eight Real Bridges

Introduction

Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

Conclusions

Beam & Slab 1 -	1	0.07	0.1	0.07	0.01	0.51	0.07	0.02	- 1.0
Truss 1 -	0.07	1	0.06	0.05	0.01	0.08	0.95	0.01	- 0.8
Cable-stayed -	0.1	0.06		0.19	0.01	0.12	0.06	0.01	
Arch -	0.07	0.05	0.19	1	0.01	0.07	0.05	0.01	- 0.6
Suspension 1 -	0.01	0.01	0.01	0.01	1	0.01	0.01	0.47	- 0.4
Beam & Slab 2 -	0.51	0.08	0.12	0.07	0.01		0.08	0.02	
Truss 2 -	0.07	0.95	0.06	0.05	0.01	0.08		0.01	- 0.2
Suspension 2 -	0.02	0.01	0.01	0.01	0.47	0.02	0.01		
	Beam & Slab 1 -	Truss 1 -	Cable-stayed -	Arch -	Suspension 1 -	Beam & Slab 2 -	Truss 2 -	Suspension 2 -	

・ロト ・ 同ト ・ ヨト ・ ヨト

590

э

Gnat/Piper Transfer

メロト メロト メヨト メヨト

590

э

Introduction

Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

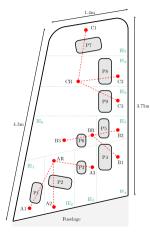
Another Example: Wind Turbine

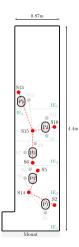
Real-World Case Study

IE Models

Introduction

Transfer Learning


PBSHM


When is a Bridge not ar Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

Conclusions

・日・ ・四・ ・田・

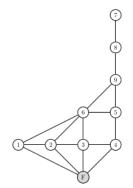
590

æ

AG Models

Introduction

Transfer Learning


PBSHM

When is a Bridge not ar Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

Conclusions

・ロト ・四ト ・ヨト ・ヨト

æ

590

Introduction

Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

- Idea was to train a classifier on five panels of the Gnat (source), that would work on Piper (target).
- Problem was how to choose which five which would give positive transfer?
- including variations in the feature ordering, there are 15120 possibilities, choosing panels at random.
- Restricting to isomorphic AG models number is reduced to 4!
- TL algorithm was *domain adaptation* (kernel-based).
- Of the 15120 'random' transfers, 0.6% gave perfect classification after transfer.
- Of the 4 isomorphic models, 1 gave perfect classification -25%.

Conclusions

Introduction

Transfer Learning

PBSHM

When is a Bridge not an Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

- Paper presents a pictorial overview of some of the ideas at the heart of population-based SHM.
- The abstract ideas at the heart of the theory are explored via simplified case studies.
- A number of highly-idealised irreducible element (IE) models and attributed graphs (AGs) are shown for some engineering structures: a bridge, an aeroplane and two wind turbines.
- The question of making comparisons between structures is discussed in terms of their maximum common subgraphs.
- The paper touches briefly on some open problems like the 'rules' for generating IE models and how one might set thresholds for transfer.

Questions?

ヘロト 人間 ト 人 田 ト 人 田 ト

E

500

Introduction

Transfer Learning

PBSHM

When is a Bridge not ar Aeroplane?

Another Example: Wind Turbines

Real-World Case Study

